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Abstract

We developed a new model based on the lattice cluster theory to describe phase behaviors of binary hyperbranched polymer solution
systems. To account for highly oriented interactions between segments, the proposed model requires an additional parameter (d1 /k) related
to the energy of the oriented interaction. A thermo-optical analysis (TOA) technique was used to determine cloud-points for the given
systems. Hyperbranched polyol/water systems exhibit an upper critical solution temperature (UCST) behavior.q 1999 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

In recent years, dendritic polymers (dendrimer and hyper-
branched polymers) have enjoyed increased attention. The
backbone architecture induces new and intriguing properties
for the polymers, such as low viscosity, miscibility, high
reactivity and high solubility in various solvents [1].

Many potential applications for dendritic polymers have
been proposed [2]. Most of the ideas focus on the peculi-
arities of the dendritic interior and a large number of
endgroups for their rationalization. The behavior of dend-
ritic polymers as hosts is essential if they are to be success-
fully used as solubilizing agents, nanoscale catalysts [3] and
drug delivery and slow release agents for perfumes, herbi-
cides and drugs. Research is also active in applications as
diverse as polymer additives, catalyst supports, thin films,
laser-printing toners and magnetic resonance imaging
(MRI) contrast agents. Despite the wealth of possible appli-
cations, there are only a few studies on the thermodynamic
properties of solutions containing dendritic polymers.

The standard lattice model of polymers was solved in the
simple mean field approximation independently by Flory [4]
and Huggins [5] and the treatment of the former is custo-
marily termed Flory–Huggins theory. In addition, much
work has been performed on improving the mathematical
solution of the lattice model including chain connectivity
and non-random mixing [6]. However, the mean field
approximation has been found to be quantitatively deficient

in some aspects. To consider the entropic contribution of the
interaction parameter,x , which is of purely enthalpic origin
in the model, Koningsveld and Kleintjens [7] derived a
closed form expansion for the interaction parameter consid-
ering the nearest neighbor site occupancy probability. In a
lattice dependent fashion that, however, it is difficult to
interpret in comparison with the experimental data.

Taking into account the compressibility and change in
density upon isothermal mixing, free volume theories for
polymer solutions were developed by numerous investiga-
tions, notably by Flory [8,9], Patterson and Delmas [10], and
Sanchez and Lacombe [11].

The lattice models are supplemented by an entropic
contribution to interaction energies. Barker and Fock [12]
developed a quasi-chemical method to account for the
specific interaction. ten Brinke and Karasz [13] have devel-
oped an incompressible model of binary mixture with the
specific interaction. Using a quasi-chemical approach to
treat the non-random character of the polymer solution,
Panayiotou and Vera [23] and Renucio and Prausnitz [24]
have developed an improved FOVE equation of state model
and Panayiotou [25], and Sanchez and Balazs [26] have
generalized the lattice fluid model to account for the specific
interaction of the compressible model.

Further, Freed et al. [14–16] reported a complicated
lattice field theory for polymer solutions, which is formally
an exact mathematical solution of the Flory–Huggins
lattice. However, most of these lattice theories fail to
yield a dependence of solution properties on the polymer
architecture. Recently, Freed et al. [17–22] developed a
systematic expansion of the partition function of a lattice
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polymer using the well-known lattice cluster theory (LCT).
This model takes into account the effect of branching on the
thermodynamic properties of polymer solutions. Lue and
Prausnitz [28] applied the LCT to obtain solvent activities
and liquid–liquid equilibria for homogeneous-dendrimer
polymers.

In this study, we investigated liquid–liquid equilibria of
hyperbranched polymer solutions (Tables 1 and 2). The
experimental technique used to determine the cloud points
of the systems was the thermo-optical analysis (TOA) tech-
nique. To predict phase behaviors of the systems, we modi-
fied the LCT model to account for strongly interacting
components by employing the concept of the generalized
lattice fluid (LF) model [13,26].

2. Experimental

2.1. Materials

The hyperbranched polyols, generation 2, 3 and 4 were
purchased from Aldrich Chemical Co. (44706-4, 44707-2,
44708-0). All polymer samples were used with no further
purification. Distilled deionized water was used as a solvent.

The weight average molecular weight (Mw) and polydis-
persity indices are listed in Table 3.

2.2. Sample preparation

Samples were prepared in separate test tubes and the
composition of each sample was precisely measured grav-
imetrically. Each solution was stirred for 5 h or more. The
solution was then transferred to a Pyrex tube (i.d.� 1 mm,
o.d.� 3 mm, length� 50 mm) and the sample tube was
flame-sealed under nitrogen atmosphere. The cloud-point

curves were determined at the saturated vapor pressure of
the solvent.

2.3. Thermo-optical analysis apparatus

Thermo-optical analysis (TOA) apparatus consists of a
heating–cooling stage, a photodiode (Mettler FP82) and a
microprocessor (Mettler FP90). An IBM PC was used as a
data acquisition system.

The heating stage is designed for observation of the ther-
mal behavior of a sample under the microscope. Luminosity
in the observation field is measured by a photodiode and
recorded on the PC. In this stage, the sample temperature is
controlled by both upper and lower plates, assuming
symmetric heat distribution throughout the sample. In this
way, equilibrium time can be shortened as the sample cell is
only t0.02 ml. Cloud points of the given systems were
determined with a scan rate of 2.08C/min.

3. Theoretical consideration

3.1. Lattice cluster theory

Freed et al. [14,15] proposed a lattice cluster theory
(LCT) for homogeneous dendrimers. In this model, they
used a classical lattice scheme as follows: a polymer solu-
tion occupies a lattice with the total number of latticeNl,
each monomer or a solvent molecule occupy one lattice and
each polymer molecule is assumed to occupyM lattice sites.
The lattice is incompressible, that is, the lattice is assumed
to be fully occupied.

Volume fractions of polymer (f2) and solvent (f1) in
solution are

f1 � Ns=Nl ; �1�

f2 � NpM=Nl ; �2�
whereNp andNs are the number of polymer molecules and
the number of solvent molecules in solution, respectively.

Lattice sites havez nearest neighbors, givingz possible
directions for the bonds emanating from a given lattice.1ps

is the attractive interaction energy. The free energy is given
in a double expansion series with 1/z andb1ps(b � 1/kT).
We truncate the series at the fourth order in 1/z and the
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Table 1
Geometric parameters for linear and dendritic polymers

Linear Dendrimer

M n 1 1 3�2g21 2 1�n 1 1
N1 n 3�2g21 2 1�n
N2 n 2 1 3�2g21 2 1��n 2 1�1 3N'

N3 n 2 2 3�2g21 2 1��n 2 2�1 6N'

N' 0 3�2g22 2 1�1 1
N1,1 (n 2 1)( n 2 2)/2 3�2g21 2 1��n 2 1��n 2 2�=2 1 3�2g21 2 1��3�2g21 2 1�2 1�n2

=2 2 3N'

N1,2 (n 2 2)( n 2 3) 3�2g21 2 1��n 2 2��n 2 3�1 3N'�N1 2 5�1 3�2g21 2 1��3�2g21 2 1�2 1�n�n 2 1�2 6N'

Table 2
The structures of the polymersa

Hyperbranched
polyol

Structure

Gen. 2 [O[CH2C(CH2H5)(CH2O–)2]2A4B8

Gen. 3 [O[CH2C(CH2H5)(CH2O–)2]2A4A8B16

Gen. 4 [O[CH2C(CH2H5)(CH2O–)2]2A4A8A16B32

a A � [COC(CH3)(CH2O–)2]; B� [COC(CH3)(CH2OH)2].



second order inb1ps. The free energy of mixing for the
polymer–solvent system is given by [27].

DA� DAath 1 DAint �3�
whereDAint andDAath are the contribution of the attractive
interaction and the athermal limit of the entropy of mixing,
respectively.

bDAint

Nl
� A�1�f2�1 2 f2�1 �A�2� 1 B�3��f2

2�1 2 f2�2

1 A�3�f2
2�1 2 f2�2�1 2 2f2�2 1 A�4�f2

2�1 2 f2�2

� �1 2 6f2�1 2 f2��3f2
2 2 3f2 1 2��1 �B�1�

1 B�2��f2�1 2 f2�2 1 B�4�f3
2�1 2 f2�2

1 C�1�f2�1 2 f2�2�1 2 2f2�2 1 C�2�f2�1 2 f2�3

1 C�3�f2
2�1 2 f2�3�1 2 3f2�1 C�4�f2�1 2 f2�4;

�4�
where

A�1� � b1z
2

; �5�

A�2� � 2
�b1�2z

4
; �6�

A�3� � 2
�b1�3z

12
; �7�

A�4� � 2
�b1�4z

48
; �8�

B�1� � 2b1N�1�; �9�

B�2� � b1

z
�2N�2�1 N�3�1 3N�'�1 N�1;2�

2 N�1�N�2�M�; �10�

B�3� � 2
2b1

z
N�1��2N�1�1 N�1;1�2 �N�1��2M�; �11�

B�4� � 2
4b1

z
�N�1��3; �12�

C�1� � 2
�b1�2

z
N�1�; �13�

C�2� � 2�b1�2N�2�; �14�

C�3� � 2�b1�2�N�1��2; �15�

C�4� � 2
�b1�2

2
�N�1;1�2 �N�1��2M�; �16�

bDAath

Nl
� f2

M
ln f2 1 �1 2 f2� ln�1 2 f2�

1 a�0�f2�1 2 f2�1 a�1�f2
2�1 2 f2�

1 a�2�f3
2�1 2 f2�; �17�
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Table 3
Experimental cloud-point data for hyperbranched polyol in water

Gen. 2 Gen. 3 Gen. 4
(Mw � 1.750,Mw/Mn � 1.44) (Mw � 3.600,Mw/Mn � 1.30) (Mw � 7.300,Mw/Mn � 1.18)

fp T(K) fp T(K) fp T(K)

0.050 321.6 0.020 380.1 0.020 406.3
0.050 322.4 0.020 386.5 0.050 436.3
0.053 324.6 0.100 396.7 0.100 430.1
0.060 327.9 0.150 395.4 0.150 425.3
0.088 329.4 0.191 394.2 0.200 421.9
0.100 330.2 0.250 378.5 0.250 413.5
0.151 333.0 0.302 366.5 0.298 312.4
0.229 336.2 0.399 330.1 0.349 331.7
0.249 338.1 0.413 331.3
0.276 341.6 0.344 334.4
0.290 341.4
0.299 341.5
0.327 341.6
0.375 341.0

338.4



where

a�0� � 1
z
�N�1��2 1

1
z2 { 2 4N�1�N�2�1

8
3
�N�1��3

2 2N�1�N�3�1 �N�2��2 2 2N�1��N�1;2�

2 N�1�N�2�M�1 2�N�1��4 1 2�N�1��2

� �N�1;1�2 �N�1��2M�2 6N�1�N�'�} ; �18�

a�1� � 1
z2

"
8
3
�N�1��3 1 2�N�1��4 1 2�N�1��2�N�1;1�

2 �N�1��2M�
#
; �19�

a�2� � 1
z2 2�N�1��4; �20�

whereN(a)� Na /M (a � 1,2,3 or') andN(ab )� Na ,b /M
(a � 1 or 2).

The combinatorial numbers,Na and Nab , describe the
architecture of polymers. The definitions [17–20] of the
structure parameters are given as follows:M is the number
of segments in each polymer molecule.N1 is the number of
bonds in each polymer molecule.N2 is the number of ways
in which three bonds intersect.N3 is the number of ways in
which three consecutive bonds can be chosen.N' is the
number of ways in which three bonds meet at a lattice site
for a polymer chain.N1,1 is the number of distinct ways of
selecting two non-sequential bonds on the same chain.N1,2

is the number of distinct ways of selecting one bond and two
sequential bonds on the same chain.

In the LCT model, the linear polymers are characterized
by a single parameter,n, the total number of bonds,M� n 1
1, and the dendritic polymers consist of a central core with
three arms; the dendrimer structure is characterized by two
parameters, the generation number (g) and the separator
length (n) that is the number of bonds between branch
points. The combinatorial numbers,Na andNab , are calcu-
lated by counting indices for these types of polymers.
Geometric parameters for linear and dendritic polymers
are listed in Table 1.

3.2. Interaction energy

In the LCT, van der Waals attractive energies (122, 111

and 112) are present between nearest-neighbor monomers,
solvent molecules, and polymer–solvent pairs. The attrac-
tive interaction in the system is characterized by parameter
1 ,

1 � 122 1 111 2 2112: �21�
Sanchez and Balazs [19] have developed the generalized

lattice fluid model to account for strongly interacting
components. The basic idea is that for two components to

interact strongly, they must be in proper orientation with
respect to one another; i.e. there is a specific spatial or
geometric constraint on the interaction (specific interac-
tion). Other mutual orientations of the interacting pairs are
energetically less favorable, but many more of them may
exist. Thus, an entropic contribution must be paid to form a
specific interaction. Sanchez et al. [26] have adopted a simi-
lar approach to that of ten Brinke and Karasz [13], who have
developed an incompressible model for a binary mixture
with specific interaction. To account for the entropic contri-
bution by the specific interaction between a monomer–
solvent pair, we employ this approach to the LCT. A
detailed description of this procedure is reported elsewhere
[26].

The polymer–solvent interaction can be weak (non-speci-
fic) with energy112 or strong (specific) with energy112 1
d1 . The new energy parameterf12, which accounts for the
specific interaction, is given by

f12 � 112 1 d1 2 kT ln
1 1 q

1 1 q exp�2bd1�
� �

; �22�

whereb � 1/kT, q is the number of ways that the non-
specific 1-2 interaction occurs. In this approach, the purely
energetic parameter has been replaced by the free energy
parameterf12. Thus, Eq. (22) is rewritten as follows:

1ps� 111 1 122 2 2f12 � 1 2 2d1

1 2kT ln
1 1 q

1 1 q exp�2bd1�
� �

;

�23�
where1 � 122 1 111 2 2112:

The chemical potential of the solvent,Dm1, can be deter-
mined from the Helmholtz free energy,

Dm1 � DA
Nl

2 f2
2DA=Nl

2f2
; �24�

bDm1 � ln�1 2 f2�1 1 2
1
M

� �
f2 1 a�0�f2

2 2 a�1�f2
2

� �1 2 2f2�2 a�2�f3
2�2 2 3f2�1 A�1�f2

2

2 �A�2� 1 B�3��f2
2�1 2 f2��1 2 3f2�

2 A�3�f2
2�1 2 f2��1 2 2f2��1 2 9f2 1 10f2

2�
2 A�4�f2

2�1 2 f2��1 2 27f2 1 138f2
2 2 294f3

2

1 306f4
2 2 126f5

2�1 �B�1� 1 B�2��2f2
2�1 2 f2�

2 B�4�2f3
2�1 2 f2��1 2 2f2�1 C�1�2f2

2�1 2 f2�
� �1 2 2f2��3 2 4f2�1 C�2�3f2

2�1 2 f2�2

2 C�3�f2
2�1 2 f2�2�1 2 10f2 1 15f2

2�
1 C�4�4f2

2�1 2 f2�3: (25)
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Similarly, the chemical potential of the polymer,Dm2, is

Dm2 � DA
Nl

1 �1 2 f2� 2DA=Nl

2f2
; �26�

bDm2 � lnf2

M
2 1 2

1
M

� �
�1 2 f2�1 a�0��1 2 f2�2

2 a�1�2f2�1 2 f2�2 1 a�2�3f2
2�1 2 f2�2

1 A�1��1 2 f2�2 1 �A�2� 1 B�3��f2�1 2 f2�2

� �2 2 3f2�1 A�3�f2�1 2 f2�2�1 2 2f2�

� �2 2 11f2 1 10f2
2�1 A�4�f2�1 2 f2�2

� �2 2 39f2 1 168f2
2 2 330f3

2 1 324f4
2 2 126f5

2�

1 �B�1� 1 B�2���1 2 2f2��1 2 f2�2

1 B�4�f2
2�1 2 f2�2�3 2 4f2�

1 C�1��1 2 f2�2�1 2 2f2�

� �1 2 8f2 1 8f2
2�1 C�2��1 2 f2�3�1 2 3f2�

1 C�3�f2�1 2 f2�3�1 2 5f2��2 2 3f2�

1 C�4��1 2 f2�4�1 2 4f2�: (27)

For the critical point,

2Dm2

2f2
� 0;

22Dm2

2f2
2

� 0; �28�

where

2bDm2

2f2
� 1 2

1
M

1 2
1
f2

� �
2 2a�0��1 2 f2�

1 a�1��3f2
2 2 4f2 1 1�

1 3a�2��4f3
2 2 6f2

2 1 2f2�
1 A�1��f2 2 1�1 �A�2� 1 B�3���2 2 14f2

1 24f2
2 2 12f3

2�1 A�3��2 2 38f2 1 192f2
2

2 396f3
2 1 360f4

2 2 120f5
2�1 �B�1� 1 B�2��

� 2�1 2 f2��3f2 2 2�1 B�4�2�f2 2 1�
�f2�23 1 12f2 2 10f2

2�1 C�1�2�1 2 f2�
� �26 1 39f2 2 72f2

2 1 40f3
2�1 C�2�6

� �f2 2 1�2�2f2 2 1�1 C�3�2�f2 2 1�2

� �1 2 17f2 1 55f2
2 2 45f3

2�1 C�4�4�2 2 5f2�
� �21 1 f2�3; (29)
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Fig. 1. Coexistence curves for the hyperbranched polyol gen. 4(Mw� 7.300)/water system. Coexistence curves are calculated from the LCT with the separator
length (n). W indicate experimental data.



22bDm2

2f2
2

� 2a�0� 1 4a�1��3f2 2 2�1 3a�2��12f2
2 2 12f2

1 2�1 2A�1� 1 �A�2� 1 B�3���2141 48f2

2 36f2
2�1 A�3��2381 384f2 2 1188f2

2

1 1440f3
2 2 600f4

2�1 A�4�2�2431 744f2

2 4230f2
2 1 115200f3

2 2 16560f4
2 1 12096f5

2

2 3528f6
2�1 �B�1� 1 B�2��2�5 2 6f2�1 B�4�

× 2�3 2 30f2 1 66f2
2 2 40f3

2�1 C�1�

� 2�4f2 2 3��2151 54f2 2 40f2
2�1 C�2�

� 12�f2 2 1��3f2 2 2�1 C�3�2�1 2 f2�

� �2191 161f2 2 355f2
2 1 225f3

2�1 C�4�

� 4�112 20f2��f2 2 1�2 2
1

Mf2
2

: (30)

4. Results and discussion

We first calculated the liquid–liquid coexistence curves
for hyperbranched polyol/water systems using the LCT with
no specific interaction correlation. Fig. 1 shows the cloud
point curves of a hyperbranched polyol gen. 4/water system.
This system exhibits a UCST behavior. The lines are
predicted by the LCT. Open circles indicate experimental
data. The calculated coexistence curves show that the
critical point of the given system increases with the
separator length (n). As shown in Fig. 2, the structure of a
hyperbranched polymer is very different from that of a
dendrimer. It is very difficult to define the separator length
of the hyperbranched polymer, because it has the linear
segment region in its structure. As shown in Fig. 1, the
critical point varies with different values of the separator
length (n). Taking into account the polydispersity of a
separator length (n) for the hyperbranched polymer, one
can correlate the experimental distribution data forn with
a proper algebraic expression of a distribution function.
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Fig. 2. Schematic descriptions of dendrimers (left) and hyperbranched
polymers (right) built from AB2-monomers; (X) represents the bond
formed between an A- and a B-group.

Fig. 3. Coexistence curves for the hyperbranched polyol gen. 4(Mw � 7.300)/water system. The solid line is predicted by the MLCT and the dotted line is
calculated by the LCT.W indicate experimental data.



However, it is very difficult to obtain the experimental
distribution curve forn. In this study, we setn as an
adjustable model parameter so that ourn values are mean
separator lengths for the given systems.

Fig. 3 compares theoretical coexistence curves by the
LCT (dotted line) with the modified lattice cluster theory
(MLCT, solid line) that takes into account the specific

interaction of strongly interacting components with experi-
mental data for the system gen. 4(Mw � 7.300)/water. Open
circles indicate experimental data. The MLCT shows better
agreement with experimental data than that of the LCT. The
model adjustable parameter values aren � 3.5, 1 /k �
105.81 K andd1 /k � 248.37 K.

Fig. 4 presents theoretical coexistence curves and experi-
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Fig. 4. Coexistence curves for the hyperbranched polyol gen. 3(Mw � 3.600)/water system. The solid line is predicted by the MLCT and the dotted line is
calculated by the LCT.W indicate experimental data.

Fig. 5. Coexistence curves for the hyperbranched polyol gen. 2(Mw � 1.750)/water system. The solid line is predicted by the MLCT and the dotted line is
calculated by the LCT.W indicate experimental data.



mental data for the system gen. 3 (Nw � 3.600)/water. Open
circles indicate experimental data. The coexistence curves
are predicted both by the LCT (dotted line) and the MLCT
(solid line). The MLCT also describes the phase behavior of
the system gen. 3/water better than that of the LCT.
The model parameter values aren � 6.0, 1 /k � 94.57 K
andd1 /k � 210.79 K.

Fig. 5 shows coexistence curves for the system gen.
2/water. Open circles indicate experimental data. The solid
line is calculated by this work and the dotted line is
predicted by the LCT. The model parameter values are
n � 6.0, 1 /k � 105.53 K andd1 /k � 223.21 K. As shown
in Fig. 5, there are large deviations between theoretical
predictions and the experimental data in the dilute polymer
concentration region.

According to Turner et al. [29], solubility of a hyper-
branched polymer is largely dependent on the end-group
structure. The solubility increases with the number of
polar end groups of a hyperbranched polymer in a polar
solvent. As both the LCT and the MLCT do not consider
the contribution of the end-groups, it is difficult to predict
the phase behavior of a hyperbranched polymer in the dilute
polymer concentration region in which the end-groups of a
polymer strongly interact with solvent.

5. Conclusion

The MLCT calculation shows a good agreement with
experimental data. The model developed for the dendrimer
can be appropriately applied to the hyperbranched polymer
system. In this study, we introduced the contribution of the
specific interaction to the free energy of mixing for the LCT.
It, however, needs to take into account the end-group effect
and the structure characteristic of the hyperbranched
molecule.
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